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INSTANTANEOUS NON-LINEAR OPERATORS FOR TRACKING
MULTICOMPONENT SIGNAL PARAMETERS"®

R. Kumareson! A. G. Sadasiv

C. S. Ramalingam® J. F. Kgise?

!Department of Electrical Engineering, University of Rhode Liland, Kingston, RI 02881.
?Department of Electrical Engineering, Rutgers University, Piscataway, NJ 08855.

ABSTRACT

We have extended the Kaiser-Teager algorithm for sep-
agating the contributions of the amplitude modulation and
{requency modulation of a single sinusoid to a sigrnal con-
sisting of multiple components. To achieve this separation,
we use an instantaneous non-linear operator, which turns
out to be the determinant of a Toeplitz matrix formed with
the signal samples. Because of its instantaneously adaptive
nature, we can use this algorithm to track paramecter varia-
tions in the signal components, provided these variations are
not too rapid. We demonstrate this using a synthetic signal
containing two AM-FM signal components and a speech sig-
nal. We also point out the method’s relationship to Prony’s
method.

1. INTRODUCTION

In many applications, such as speech processing {1, 2], radar
signal processing [3], one can mode] the observed signal as
@ linear combination of a small number of sinusaidal sig-
nals that arc slowly time-varying in both amplitude and
frequency. In such cases, a signal consisting of m compo-
nents may be parametrized as

2(t) = ) Ax(t)cos(Bu (1)), ()

k=1

where Y4 = 4, 4 ¢a(t). ws is the nominal carrier fre-
quency of the ¥'® compouent, while $4(t) and Ax(2) are the
time-varying frequency and amplitude, respectively. Given
the signal £(?), one wishes to determine and track the am-
plitude envelopes and the frequency trajectories of the in-
dividual signal components. Traditional short-time Fouricr
transform methods are not always successful in processing
such signals due to their limited resolution. The so-called
time-frequency representations, such as the Wigner distri-
bution, have their own problems with multicomponent sig-
nals {4].

Recently, Kaiser [5, 6) introduced a novel approach to
track the frequency and amplitude variations of a single
component signal by applying what is called an energy op-
erator. Originally devised by Teager, the discrete-time ver

*THIS WORK WAS SUPPORTED BY AN AIR FORCE
CONTRACT AFOSR {9620-92.)-0378

sion of the energy operator ¥(-) is an instantaneous nogp.
lineax function of the samples of a signal:

¥(2n) = 23 ~ Ta_1Znes1. (2

If 2o represents a sinewave, i.c., zo = Ajcos(win + ¢,),
whose radian frequency wy is constant, then the ‘energy’
¥(2n) = A}sin? wy [S). Observe that this quantity is time
invariant. Using this functional dependence of encrgy on
the frequency and amplitude of a sinuscidal signal, Kaiser
and his callaborators [7] devised methods to separate the
contribution of the amplitude and frequency of a signal.
They then applied this method to approximately deter-
mining the amplitude and frequency variations of an am-
plitude/frequency modulated (AM-FM) signal. Although
their method is computationally simple and instantaneously
adaptive in mature, it cannot be directly applied to track-
ing amplitude and frequency variations of signals composed
of rmultiple components as in (1), For such multicomponent
signals, Kaiser [5] advocates first separating the signals into
frequency components by filtering.

In this paper we extend the method in {7) to simulta
neously tracking the amplitude and frequency variations of
multicomponent signals. This is accomplished by using cer-
tain instantaneous non-linear operators on the signal sam-
ples. These can be motivated by viewing the Teager energy
operator ¥(zn) as the determinant of a matzix:

¥(za) = Det [ n Favl ] . (3)

E . E 29

As mentioned before, this determinant is time-invariant for
3 single sinusoidal signal with constant frequency. We have
shown [8] that this time-invariance property of the deter-
minant can be extended to an appropriately constructed
higher-order m x m mattix, whose elements are the sam-
ples of a sum of m sinusoids. A similar result has been ob-
tained for continuous-time signals as well [8]. In section 2
we have outlined this result. In section 3 we show how these
results can be related to the energy separation algorithms
derived by Maragas, Quatieri, and Kaiser 7). Furthes, in
section 4, using the functional dependence of these deter-
minants on the frequencies and amplitudes of the sinewave
components, we describe the two-component AM-FM sep-
aration algorithm. We obtain explicit expressions for the
instantaneous frequencics of two (real-valued) component
signals. This can be extended to up to four components
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. However, beyond four components one has to root

'Plygomia.l to obtain the frequencies. This is reminiscent

the well-known Proiy’s method [9).

§. TIME INVARIANCE OF THE

DETERMINANT OF A TOEPLITZ MATRIX

i‘; 2. be the samples of a linear combination of m
mplex-valued, difcrete-time sinusoidal signals with arbi-

irary phases and non-zero amplitudes, i.c.,

m
£a = Z Apdloanta) 0)

kz1

The distinct radian frequencies wa € (0, 2r) have no par-
! ucular relationship between them. Consider the following
m x m Toeplits matrix Xm(n) formed with the elements of
" the sequence £a:

Tn Znet Zatm-}

Zn-1 Tn Zasm=2
Xn)=| M O

Ta-méel Tn-ma2 -°° E 1

Using the definition of 2, in (4), we can decompose Xom(n)
into a product of three matrices to facilitate the computas-
tion of its determinant, Ax, where the dependence on m
and n is not explicitly shown for notational simplicisy. This
decomposition may be written as

D i

Xm(n) = VA()VZ, (6)

The superscript ‘H' denotes Hermitian transpose. The di-
agonal matrix A(n) has Ay = Ape?(™40) k=12 ..m
1s its diagonal entries. V is a Vandermonde matrix [10]
with entries vaz = ¢ (*=1) k1 » 1,2,.. ,m. Note that
the diagonal matrix in the middle is the one that shows
dependence on the time index. The determinant of V is
n:z-x,.a(‘"', —¢’”1) [10] and the determinant of A(n) is

[Ir., Asef*an49) Hence, after some simplification,

m -
Hoantor) L2 (W w
Ax-HA.e . Hism ( 3 ) )]
hw] 8 ,i=}
agl
Since the complex-valued factor in the above formula has
unit magnitude, we observe that the magnitude of Ax is
invariant with the time index. -
If the signal is composed of m/2 real-valued sinusolds,

e, 2y = '."_’,’ Ascos(wan + é1) , then Wiym/p2 = =

And $uyms3 = —¢s for k = 1,2,...,m/2. This leads to
further simplification of (7) for Ax:

m/2

HAz BN Wy

113
:Ii. (3o (= ;‘w)), (¢sin® (23 w))’. @)
(24

URI/ELE DEPT.

Note that this determinant is always positive, and of course,
time-invariant. The essence of the above results can be ex-
pressed in words as follows: For a sequence z., composed
of & sum of m complex-valued sinewaves with arbitrasy fre-
quencies, phases, and amplitudes, there exists an instanta-
neous pon-linear function involving (2m ~ 1) samples that
takes on a constant magnitude anywhere on the time-index
axis. A similar statement is trye for real-valued sinewaves.
This appears to be a- useful fact as demonstrated below.
Similar results can also be obtained for continuous-time sig-
naly (8].

Now assume that the sequence z, in (4) is passed
through a linear time-invariant filter with irmnpulse response
WLty (¢’®). Then the output sequence y» may be writ.
ten as

Yo = ZA'. e)'('-’-"*’b) , (9)

ksl
where A, = As H(¢’“*). This result follows from the fact
that complex exponentials are eigenfunctions for a linear
time-invariant filter. If we constract an m x m Toeplitz
matrix Ym(n) (similar to Xm(n) in (5)) with the clements

of the sequence yn, since the expression for yn is akin to’

that of z. in (4), we can write down the determinant of
Ym(n) using (7) as

ay = [T aseits+o) IT 4nin’ (5—“—2——"-’1) (10)
kw1 i..l‘-?
Therefore, the determinants of Ym(n) and Xm(n) are 1e-
lated as follows:

ay = ax - [ #(™) . (11)

hal

Next, we show the relationship of the above tesults to the
Discrete Energy Separation Algorithms (DESA) of Mazagos
et al. [7].

3. RELATION TO THE DESA ALGORITHMS

In [7) Maragos ¢t al. have proposed two algorithms, viz.,
DESA-2 and DESA.1, to separate amplitude modulation
from {requency modulation using the energy operator. Us-
ing the results derived in the previous section we first show
how we can obtain their algorithms. Extensior to more
than one component is discussed in the next two sections.

Let z, = Aj(n)cos(wi(n) + ¢1) correspond to a single
AM-FM signal. Let us assume that A;(n) and wi(n) are
only slowly varying and that they can be approximated as
constants over any consecutive three-sample period. Since
£, consists of two complex exponentials (m = 2), from (8)
Ax = Ai(n) sin’[ws(n)). Next, filter z, through a fiter
with impulse response hn = {},0,-1) pIry (e —e™v)
to yield ya. Using (11), Oy is found to be

Ay = Ox H(C""‘(")) [{(")Ux(ﬂ))
- A:(!l) dn’[u,(n)] .:. Ic""'(‘" - c—,.,(.),:

= A}(n) sin‘[wi(n)] . (12)
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which immediately leads to DESA-2. To obt:ia DESA-1
we observe that yn is the outpus of a filter whase transfer
function is H)(¢’Y) = 1 — ¢7’“, while z, is the resuit of
filtering £, by H3(e’*) = ¢’ ~ 1, and applying (13) yields
Eq. (5) in {1). Thus, these two of the algorithms proposed in
[7] can be obtained as special cases of the above expressions.

The algorithms devised in {7) kave the disadvantage of
being applicable to only single-component AM-FM signals.
Using (11) we next show how to separate amplitude from
frequency modulation in the case of a two-component AM-
FM signal.

4. A TWO-COMPONENT AM-FM SIGNAL
SEPARATION ALGORITHM

We now extend the above algorithm to separate a (real-
valued) two-component AM-FM uigoal. Let z, =
Ay(n) cos(wi(n) + @1) + Az(n) cos(wz(n) + ¢#2). For this
case, m = 4. Next, we filter zo by Hi(e?™) =1+ e77% to
get y&) and by Hj(e'™) =1 = e=3% 10 get . As before,
we assume that A;(n) and w,(n), 1 = 1,2 are only alowly
varying so that they can be approximated as constants ovex
any period of 2m = 8 samples. Hence, as before, using (11)

% |14 7O |14 emraty)?
&2 o o e

Simplifying, we obtain

1B )z utn) | o o) tunte)
1 -Az—yx’- = CO% ul(“) ;Uz(ﬂ) - cos ”1(");5'7(”) . (1‘)

From thc above two cquations we can solve for wy(n) and
wz(n), respectively. Once the frequencies have been com-
puted, the amplitudes can be obtained by solving a set of
linear equations in the least-squares sense.

5. MULTICOMPONENT AM-FM
SEPARATION ALGORITHM

The AM-FM separation algorithm developed in the previ-
ous section can be generalized to deal with an m-component
signal. To this end, consider m distinet length-two filters,
with transfer functions of the form Hy{e’") = 14 a5 ¢’”,
1 S k € m. The as are, in general, complex. Denote by yé. )
the output of the Rlter Ha(c’*) with za as its input. Then,
applying (11), the determinants of the m x m Toeplitz ma-

trices formed from the samples of £, and ys.‘) are related
by

wy
Ay, ax T (1 40 )
im)

(13)

URI/ELE DEPT.
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for 1 € k < m. Or, using matrix notation,

o o} al b %Z_L -1

o2 a} o b x
. . . ~ M [}
N ; Ay..

om ‘:. v am b %x—' -1

(16
where 3, is the (k 4+ 1)* term in the cxpansion o)f
[T, (1 4 e71(™). Since the 6s’s are distincs, the Vazder-
monde matrix on the Jeft-hand side is non-singular. Hepce
(16) can be salved by matrix inversion. The f{requencies
wi(n) are casily seen to be the u;le- of the roots of the
polynomial 143" b1 2~'. Once again, the assumption is
that the parameters of the AM-FM sigual can be approx-
mated as constants over any 2m-sample interval.

6. SIMULATIONS AND DISCUSSION

As an illustrative example of the above techniques, consider
the fallowing two-component AM-FM signal of the form
3(n) = Ai(n)e:(n) + A3(n)s3(n), where

cos 0251n+-—-— n=01,...,200

n(n)= a
cos (0.35wn — 2= n=1201,202,...,39
m.os:n-ﬁé n=01,..,199
Ja(n) =

cos {0.4rn W n = 200,20},...,399

Aifn) = 1-0.25cos (52 + %)
Ai(n) = 1-025cos (£3 + %)

The overall signal s(n) is shown in Fig. 1(a). The estimated
frequency tracks are shown in Fig. 1(b). The amplitudes,
obtained by solving a set of linear equations in the least-
squares sense, are shown in Fig. 1(c). In solving for the
frequencies, we found that (13) and (14) led to numerical
difficulties even in the presence of small amounts of noise.
This is because the argument of the inverse cosine function
did not always have magnitude less than unity. On the other
band, frequency estimates obtained by rooting a polynomial
were found to be more robust. Hence this approach was
used.

We pext applied this algorithm to speech data cor
responding to the phoneme /oo/ (16 kHz sampling fre
quency). The data contained four formant frequencies
around 600 Hz, 1200 Hz, 2300 Hsz, and 3100 Hi., respec-
tively. Subsequent low-pass filtering eliminated the third
and the fourth formant frequencies. Fig. 2(a) shows the -
tered speech signal. We used a model order m = 8 (four real
sinusoids) on this data. Fig. 2(b) shows the first two for-
mant frequency tracks, after smoothing by an eleven-point
median filter. In Fig. 2(c) the corresponding least-squares
estimates of the amplitude envelopes are shown, which used
the median-filtered frequencies. Even though the fltered
signal has only two dominant components, a model order of

n=01,...,399.

9We thank Dr. Shubha Kadambe ¢f A. 1. duPont Institute,
DE, for supplying us the speech data used in our simulations.
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‘.., = 4 (two real sinusoids) yielded poor estimates of t_he for-
pant frequencies. Increasing the otder to m = 6 improved

the estimates noticeably; the estimates were, however, still

‘goisy. A Todel order m = 8 was the smallest order required
{5 yield réasonable results for this example.

7. CONCLUSIONS

We have extended the Kaiser-Teager method to multicom-
ponent signals. Even though this approach appears to be

Tmexent from traditional frequency estimation algerithms,
;¢ bears a close resemblance to the Prony's method in that

it requires polynomial rooting to estimate the component

| frequencies, particularly if m is larger thin four (for cor-

plex signals) or eight (for real signals). It seems hard to

* ecape from the clutches of Prony’s method. There is scope

for improving the method’s performance in the presence of
noise by choosing the Hi(c’“) appropriately.

URI/ELE DEPT. P&GE

(4) I B. Choi and W. J. Williams, “Improved time-
frequency representation of multicomponent signals us-
ing exponential kernels,” JEEE Trans. Acoust., Specch
ond Signal Process., vol. ASSP-37, pp. 862-871, 1989.

[5) J. F. Kaiser, “On » simple algoritbm to calculate the
‘energy’ of a signal,” in Proc. IEEE JCASSP-90, (Al-
buquerque, NM), Apr. 1990.

[6] 3. F. Kaiser, “On Teager’s energy algorithm and its
generalization to continuous sigmals,” in Proc. JEEE
DSP Workshop, (New Paltz, NY), Sep. 1990.

(71 P. Maragos, J. F. Kaiser, and T. F. Quatieri, *On sep-
arating amplitude from frequency modulations using
energy operators,” in Proc. JEEE ICASSP-92, (San
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(a) {b) ()

Fig. 1 (s) Two-component AM-FM signal. (b) Estiroated frequency tracks, smoothed by an 11-paint median filter.
(c) Estimated amplitude envelopes obtained via least-squares solution that utilized the median-filtered frequendies.

| :h h \Mﬁq‘!’%’ﬂ

Fig. 2 (a) Signal from speech vowel /oo, filtered to retain only the first two formant {requencies. (b) Estimated frequency
tracks of the first and second formant frequencies, smoothed by an 11-point median filter, Assumed model order: m = 8.
{c) Estimated amplitude envelopes obtained via least-squarcs solution that utilized the median-filtered frequencies.
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ON ACCURATELY TRACKING THE HARMONIC COMPONENTS’ PARAMETERS
IN VOICED-SPEECH SEGMENTS AND SUBSEQUENT MODELING BY A
TRANSFER FUNCTION®

R. Kumagreson

Department of Electrical Engineering, University of Rhode Island, Kingston, RI 02881

ABSTRACT

We propose an improved method to model voiced
speech signals. First, we describe a method to accurately
model the signals using a linear combination of harmoni-
cally related sinewaves. The method fits a linear combi-
nation of sines and cosines whose frequendies are intcger
multiples of the uaknown fundamental (pitch) frequency
to the speech data in the least-square sense, The ampli-
tudes of the sinewaves and the fundamental frequency are
the unknowns and are determined simultaneously using the
least-squares fit. Using our method, we show how one can
obtain smoothly varying frequency and amplitude tracks
for all the harmonics and thus model the specch signal par-
simoniocusly. After obtaining the harmonic decomposition,
we regard the time-varying amplitudes of the cosinusoidal
and sinusocida! harmonic components as the real and imag-
inary parts of the complex-valued {requency responses of
the slowly time-varying filter representing the vocal tract
and glottal excitation pulse generator, in cascade. We then
fit a sequence of all-pole/pole-zero models to the complex
{requency response values.

1. INTRODUCTION

Voiced-segments constitute a significant portion of speech
signals. In many applications, it is important to extract fea-
tures such as the pitch frequency and the vocal tract trans-
fer function {rom these segments accurately, even when the
speech signal is cortupted by noise. Usually, short-time
Fourier transform (STFT), lincar prediction (LP) or cep-
stral methods are used to extract these features.

Voiced-speech signals are often modeled as the output of a
slowly time-varying linear filter representing the vocal tract,
excited by & quasi-periodic glottal pulse train. If the glottal
pulse train were indeed exactly periedic, it can be repre-
sented by a Fourier series with the fundamental frequency
corresponding to the pitch frequency, which is given by the
reciprocal of the period of the pulse train. Since the pulse
train is only quasi-periodic, the voiced speech wavcform
may be modeled by a sum of harmonically related sinewaves
with slowly varying fundamental {requency, with arbitrary
amplitudes and phases. Many authors, perhaps starting
with Flanagan, have observed this feature and taken ad-
vantage of it. Recently, McAulay and Quatieri [1, 2, 3, 4]

*THIS RESEARCH WAS SUPPORTED BY AN AFOSR
CONTRACT # F{9620-92-J-0378

1068-6393/92 $03.00 © 1992 IEEE
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(see also the references therein) have carried out extensive
work in modeling both voiced and unvoiced speech by us
ing a linear combination of sinusoidal signals. They have
applied it to speech coding, co-chiannel interference suppres
sion, and time scaling of specech. The algorithms proposed
in the above references rely primarily on the STFT (or some
modification of it) to obtain the sincwave decomposition.
In this paper, our primary contributions are two-fold:

o We describe 3 method to accurately estimate the fun-
damental/pitch frequency and the amplitudes of the
harmonically related sinewaves simultaneously, using a
direct least-squares fit to the speech data. Such meth.
ods are well known to model-based spectral analysis
practitioners but appears not to have been used in
speech analysis. We apply this method to 2 speech
segment over short, possibly overlapping windows. Un-
like in (1), we do not assume that the analysis window
be an integer multiple of the pitch period or use the
STFT pe.s to determine the parameters. Also, we do
not employ the pitch synchronous analysis advocated
in [$). Using our method we show how one can ob-
tain smoothly varying frequency and amplitude tracks
for all the harmonics and thus model the speech signal
parsimoniously. This method is in fact the maximum-
likelihood method, if the background noise is white and
the assumed signal model is valid. Therefore, if the
speech signal is corrupted by noise, it may be advanta-
geous to estimate the harmonic components first using
our method and then use them as ‘cleaned-up’ data for
further modeling of the vocal tract etc.

o After obtaining the harmonic decomposition, we regard
the time-varying amplitudes of the cosinusoidal and si-
nusoidal harmonic components as the real and imagi-
nary parts of the complex-valued frequency responses
of the time-varying filter, representing the vocal tract
and glottal excitation pulse generator, in cascade. We
assume that this cascaded filter is slowly timc-varying.
We then fit a sequence of transfer function models to
the complex frequency response values.

2. ACCURATELY ESTIMATING THE
HARMONIC COMPONENTS

Let us assume that a block of N samples of 24, n =
0,...,N—1,is to be modeled by a signal s consisting of M
harmonically related sinewaves with unknown amplitudes
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pd fundamental frequency wo. M is assumed knowan.

M .
= Z Ascos(wokn) + Ba sin(wokn) .

k=1

8y

ve wish 1o minimize the sum of squared errors by choosing
ge unknown amplitudes and the frequency wo.

Ny
E= Z(:., — sa).

LI

(2)

‘n matrix-vector notation, let x = (2o, 71, ... ,zN_I)T and
s = (50.91,...,58-1)7 denote the data and signal model
vectors, respectively. Using the model given in (1) we can
wtite the signal vector 8 as

8s= Wa, (3)
where a is the 2 x 1 vector of unknown amplitudes a =
(Ay.A2,...,Ax,B1,Bs,...,By)T and W is an N x 2M
matrix, whose (k,{)-th element is given by

W = {

for k=0,1,...,N — 1. Using this notation we can rewrite

the error E as
E = |ix — Walj; (4)

Since both W and a are unknown, this problem is a bilinear
least-squares problem. Such problems have been dealt with
in numerical analysis and spectral analysis literatute for the
past 20 years (6] (equation 16.152). The standard trick is to
assume that wo is known and then solve the least-squares
problem for the best amplitudes. For a given wo the best
amplitude a iy given by

cos{klug) {=12..,M
sin{k(l - MYwo) I=M+1,M+2,....2M

a=(Wiw)-lwTx . (3)
Substituting this value of a back into the ¢rror expression
in {4) gives

E=x"(1-WWTW) W), )
where we have used the fact that the projection matrix
{(I-W(WTW)~*WT7) is idempotent. Note that E now de-
Pends explicitly on the unknown we only. This etror can be
minimized by a coarse scarch aver wyp followed by a gradient
descent procedure. We have derived explicit expressions for
the gradient and the Hessian, which are given in (7]. Once
the best wy that minimizes E is found, the corresponding
amplitudes can be obtained from (5).

We mention two closely related problems. In the case of
co-channel interference suppression [2], that is separating
speech signals from two different speakers that have been
added together, the same modeling procedure as above can
be used. Except, in this csse, 2o in (1) will be modeled
as a linear combination of two sets of harmonically related
sinewaves with two different fundamental frequencies. Now
the error £ in (6) will have to be minimized over two inde-
pendent fundamental frequencies. In other situations, such
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3s modeling unvoiced segments, the modeling procedure can
be modified, to lcast-square fit 2 linear combination of si-
nusoids which are not neccssarily harmonically related, to
the dats. In this case it may be necessary to filler the data
into two or mote frequency bands to reduce the numbers of
sinusoids needed for the fit in each band.

8. ANALYSIS OF VOICED-SEGMENTS
USING PROPOSED METHOD

Fig. 1 shows 3500 samples of the phoneme foo/. The data
was sampled at 16 kHz. Before applying the above algo-
sithm to the speech data we Jow-pass filtered the data to
about 1000 Hz and down-sampled by 4, for the following
reasons:

o The low-pass region from 0-1 kHz contains the major
portion of the signal energy.

¢ In this region the number of harmonic components with
significant energy is likely to be small i.¢., of the order
of 10 or less and down-sampling reduces the required
computation.

o Often the pitch frequency wo varies slowly with time.
This causes the harmonic components (some integer
multiple of wg) in the high frequency range {say, near
3000 Hz) to sweep rapidly in frequency. We wish to
exclude such components in our modeling, because tne
model in (1) is less valid for such components.

Fig. 2 shows the magnitude of the Fourier transform of the
entire signal prior to filtering and down-sampling,

Next, we applied the algorithm described in section 2 to
estimate wo on overlapping blocks of data. Fig. 3(a) shows
the error £ as a function of the possible candidate wo’s for
the initial part of speech data. To find the minimum we first
performed a coarse search to get a good initial guess and
then used a gradient descent procedure (7] to find the global
minimurmn of £ which gave the best wy estimate. Fig. 3(a)
also shows the effect of block size on E as it is changed from
ofc pitch period {32 samples) to about three pitch periods
(96 samples). Note that the valley with the global minimum
gets deeper as the size of the block increases. However, as
the block sige is increased, the optimal we also increases,
because, in this example, the pitch frequency is slightly in-
creasing with time. Fig. 3(b) shows the value of £ as 2
function of the number of assumed harmonic components
M (M varying from 2 to 5) for a fixed block size of 64
samples, Observe that the location of the minimum does
not change much when M is chosen greater than 2. This
shows that the precise value of M may not be that critical
while estimating wy. Also observc that the DFT magnitude
of the data clearly shows four or five distinct peaks in the
frequency tegion from 0 to 1000 Hz.

The above method for estimating wo is applied to con-
tiguous overlapping blocks of data. The block size was 64
samples. The overlap was 60 samples. Fig. 4 shows the
pitch frequency track thus obtsined and its multiples, as a
function of time (the dotted and solid curves; dotted curves
have been used for some harmonics for ease of visualization).
Next, we also estimated the frequencies of the undetlying
sinuscidal components without assuming that the sincwaves
are harmenically related. This was done by a least-squates
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